
By formula (7-l), we obtain the optimal af p(a) for the Shapley vector d'U (Jo, T - to): 

8.121+ 8-48 7.0st+ 13.92 -0.201+ 7.60 
15r+30 ’ m+30 ’ 151+30 

O<t<i 
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A DIFFERENTIAL GAME WITH A FUZZY TARGET SET 
AND FUZZY STARTING POSITIONS* 

V.A. BAIDOSOV 

A mathematical model of a situation in which it is required to develop a 
single control strategy for a fuzzy set of objects in the presence of 
noise is considered. The control objective is to hit a fuzzy target set 
at a given instant of time or to evade the target set. The problem 
reduces to constructing a universal optimal strategy for a differential 
game whose payoff function is the membership function of the target set. 

1. Consider the differential game 

x' = f (t, x, u, u) (1.1) 
x E R", u, (1) E I-', u (t) E Q 

where P and Q are compacta in R" and fig. We assume that the right-hand side of (1.1) satisfies 
the canonical conditions /l, p.37, 38/ and that the small-game saddle-point condition holds 

il, p.79/. The game is considered in the time interval T L it*, 81. 
Let u: T X R" -cl" be some position& strategy of the first player. We denote by K, [t,, 

tl(x,) the set of constructive motions /2, p.33/ x(.) generated by the strategy u in the 
time interval [t,, tl and satisfying the initial condition x (to) = X@. Let the set X be the 
set of all non-empty subsets of the space X. We define the set-valued mapping 

K, (t, t,): R” + set R", t > &J 

setting 

Ku (tv to) xo L!= 0 (t) : x (- ) E K, [to, t J (x0)) 

We similarly define the set-valued mappings K,(t,t& for the second-player strategy u. 

Let F(X) be the family of fuzzy sets in the space X, pa the membership function of a 
fuzzy set. The value of p~ at the point x will be denoted by (II.41 x>. 

If some mapping 

n: Rn +F(R") (1.Z) 

*Prikl.Matem.Mekhan.,53,1,60-65,1989 
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is given, then by Zadeh's generalization principle /3/, it can be continued to the mapping 

n: F(R") +F(R") (1.3) 

setting for A E F(fi") and y E R’” 

Here /\ stands for the operation of taking the minimum, i.e., for any numbers a,, a2, 

A 
a, /j a2 = min {a,, a~} 

Consider a special case of the mapping al (1.2) 

n : R” + set R” 

Then (1.4) may be rewritten in the form 
(1.5) 

(pndr s> = sup <p-4, 09 

n-'y =A {x: y E ax} 

(1.6) 

If the set n-'y is empty, then the right-hand side in (1.6) is zero. 

For the fuzzy sets A, B, the inclusion A C B implies that PA G Pa. Note that for 

the mapping ?I (1.3) defined above, A C B implies that nA c nB. Let a E IO, 11 and let 
M be a fuzzy set. The level set M,is the ordinary (non-fuzzy) set defined by the condition 

M,~{x~R”:(p~,x>~u} 

The support of the fuzzy set M is the ordinary set 

suppM~{x~R”:(p,,g.x)>O} 

Consider the mapping n (1.5). Its continuation (1.3) on F(H") satisfies the following 
easily proved proposition. Let 
we have the inclusions nA,CB,. 

Let us consider the problem of the pursuit of a fuzzy set from a fuzzy starting position. 

A, B c F (R”). Then nA C B if and only if for allude (0,ll 
Here 

nA,A U nx 
XE.4~ 

We assume that the system state is defined by a fuzzy set in R”. Thus, the starting 

positions are represented by the couples (t, A), where A E F(R”). The position (t, A) is a 
fuzzy set in (t, Rn). Here 

Let ME F (R”) be the fuzzy target set. 

We say that the strategy v solves the problem of the pursuit of M starting from the 
position (t, A) if K,(tl, t) A c M. We shall see that the pursuit problem for a fuzzy set 

reduces to a maxmin problem. It is therefore naturally solved by the second player. 

Consider a gaming problem with payoff function p 2 PM. If the function p is upper or 
lower semicontinuous, and in particular continuous, then in this problem for any starting 
position (to, x0) the value of the game exists, 

c (to, x0) A sup inf (p, K, (0, to) x0> = id SUP <IL, KU (0, to) XO> 
D U 

The value of the game inherits the semicontinuity property of the payoff function /4/. 
If the payoff function p is continuous, then the game has a saddle point (u",v"), i.e., for 
any position (t,,x,) there exist strategies u'and v0 such that 

c (to, x0) = inf <P, KU. (0, tO) x0> = sup <IL, KP (0, to) x0> 

The strategies u0 and V” are called optimal. The optimal strategy u" is called 
universal for the domain DC T x R” if for all (t,x)~ D 

c (t, x) = inf (p, K,a (0, t) X> 

The universal strategy U' is similarly defined /4/. 
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Since the payoff function p takes values in [O,II, the value of the game also takes 
values in [O, 11 and is a membership function of some fuzzy set W in T X R". We introduce 
the functions M': R" -+R' defined by the condition <F', x> = c ($9 x). 

Let n' be the membership function of the fuzzy set w(t), Clearly, W (9) = &f. The 
sets W (t) are naturally considered as the time cross-sections of the set W. 

Proposition 1. Let the membership function p 2% pM be continuous. Then the problem of 
the pursuit of the fuzzy set M starting from the fuzzy position (t,A) is solvable only if 

A c w(t) (1.7) 
If a universal optimal strategy u" exists for some domain D containing the support of 

the set (t, A), then condition (1.7) is also sufficient for solving the pursuit problem by 
the strategy U". 

Proof. Assume that a strategy v exists that solves the pursuit problem, Ko (0, t)A C M. 
Then, by (l-6), this condition takes the form 

Thus, PA d FL and A c W (0. 
Now assume that A C W'(t) and a universal optimal strategy v0 exists for some domain D 

containing the support of the set (#,A). Solvability of the pursuit problem by the strategy 
v" is equivalent to condition (1.8) for u= Q to the condition 

VXESUP~ A: <pa, x) g inf fp, Ic,, (0, 0 r) (i-3 

We will show that this condition is satisfied. We have 

V(t, x) 0 D: <p', x> = inf tfi, K,. (8, t) x) 

Therefore, 
vx E "llpp A: <p', x> = inf <p, KBo(6, t)a> 

Since A C W((tl. this directly leads to (1.9). 
We see from this proposition that the set W plays the role of the maximum u-stable 

bridge terminating on the set M. We also see from the proof that the pursuit problem of a 
fuzzy set reduces to a maxmin problem for the membership function. 

Now consider the evasion problem. We say that the first-player strategy u solves the 
problem of evasion of the fuzzy set M from the fuzzy starting position (t,A), if it solves 
the problem of pursuit of the complement M' of the set M from the starting position (&A). By 
definition <PM', x> = 1 - <~M,x>. Note that for fuzzy sets the intersection 1%4 fl w in 
general is non-empty. 

Let p'% jr&f' = 1 - &&. Assume, as before, that the function p is continuous. 
Let the starting position (t, x) be given. Consider two games. In the first (second) 

game, the first player solves a minimax (maximin) problem and the second player solves a 
maximin (minimax) problem for the payoff function p (p'). Let the value of the first game be 

c (t, x) and the value of the second game be c'(t,x). We can show that c' (t, x) = 1 - e (t, x) 
and the couple of strategies (u".vo) is a saddle point in the first game if and only if it 
is a saddle point in the second game. 

Note that the value of the game c’(t,x) is the membership function of the complement W' 

of the set W. Consider the sets w'(t) with membership function j.U": <p'f, x> A c' (t, x). 
Then, using the above and Proposition 1, we obtain 

Proposition 2. Let the payoff function FL PB~ be continuous. Then for the problem of 
the evasion of the fuzzy set M starting from the fuzzy position (a A) to be solvable it is 
necessary that 

A c W' (t) (1.10) 

If a universal optimal strategy u0 exists for some domain D that contains the support 
of the set (&A), then the condition (1.10) is sufficient to solve the evasion problem by 
strategy UO. 

2, Universal strategies do not necessarily exist in the class of ordinary positional 
strategies ~(t,x), U&X) /5, 4/. However, they exist in the class of positional strategies 

tl (t. 5, a), v (t. r, e), dependent on the parameter a>0 il. 6, 4/. We will follow the line 
of analysis of /II. The game is considered in the bounded domain 

G A ((t, x): t, < t < 0, II x II < R [tl ) 
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R [tl A (1 + R,) exp {h (t - to)) - 1 

Let 

G (t) e {x E R”: (t, x) E G} 

We assume that the target set M belongs to F (G(0)). Note that if M is a fuzzy set in R" 
with a precompact support, then R, may be chosen so that this condition is satisfied. For 
fuzzy starting positions (t,A) we assume that A f? F (G(t)). We denote by W the fuzzy set in 
G whose membership function is the value of the game. The time cross-sections w 0) are 
defined as in Sect-l. 

The control law U = (u(s), E, A}, where A is a partitioning of the interval It,,0l, e> 0, 
defines stepwise motion x It1 =X It; a, AI from the position (t,, x,,) as the solution of the 
stepwise equation 

X' It1 = f (t7 X [tl* U (ti9 X [t[lv E), U [tl) 

ti < t < ti+l 

where u itl is a measurable function and x It,1 = X@. The constructive motion x [t] generated 
by the strategy n (*) is defined as the iterated limit 

x [t] = 1 im lim x [t; ej, Ajs] 
!ep :d,p3 

where &j* is the step of the partition A,,. 
We similarly introduce stepwise and constructive motions defined respectively by the 

control law V = {v(s), e, AI and the strategy Y(~,x,E) of the second player. 
Some modifications of the constructions of Sect.1 lead to the following proposition for 

a differential game with strategies dependent on e. 

Proposition 3. Let the payoff function PL p~ be continuous. Then for the problem of 
pursuit (evasion) of the fuzzy set M starting from the fuzzy position ($,A) to be solvable 
it is necessary and sufficient that A c W(t) (A c W’(t)). Here the universal optimal strategy 
v" (u") solves the evasion (pursuit) problem. 

Note that if A c W (t) n W’ (t), then the problem of pursuit of the set M and the problem 
of evasion of the set M are solvable from the position (6 A). In this respect, fuzzy sets 
are different from ordinary sets. 

Now consider the solution of the problem by stepwise motions approximating constructive 
motions, Let 6(A) denote the step of the partition A. Let K,It,, 0; aO, 6,) (x,,) be the set 
of all stepwise motions x ftl in the interval ft,,el generated by the control laws U= 
{U (-), e, 6), where e -( se, 6 (A)< 6, such that X [toI = xg. Similarly define the set 
9; so, &I (X0) 

fl, I&l, 
of stepwise motions generated by the control laws of the second player. 

For t>tO define the operators 

K, (t, t,; E, 6): G (to) + set G (t), 10 = u, u (2.1) 

setting 

K, ft, t,; F, 6) x = {x [tl: x 1-f E KVJ it,, 0; e, 61 (x)}, 
Vex cs G ft,,) 

Using (1.4), continue the operators (2.1) to F(G(t,)). 
For the numbers aI, a2L= !O, 11 we define the operation a, C ~2 setting 

for aI + a2< 1 and a, j_ az = 1 
ai $ a* = n, + Q 

for a, -I- a2 > 1. 
Define the fuzzy set IW by 

<IL&Y> = OkI* Y> + 5. VYE G(6) 

The set 3s plays the role of the c-neighbourhood of the set M. 

Froposition 4. Let the payoff function P = h be continuous, let V’ be a universal 
optimal strategy, and let A c W(t,). Then for any number c> 0. there is a number a(G)>0 
and a function 6(6,e)> 0 such that for e -< e(6). fig 6(5, E) we have the inclusion 

K,. (8, t,; E, 6) A c Mt 
The proof follows from fl, p.232, Theorem 29.4/. 
The corresponding proposition for the evasion problem is obvious. 

5. Let us briefly consider the case when the membership function of the target set is 
semicontinuous. As before, we assume that P,,, is the payoff function. Positional strategies 



50 

are assumed to depend only on (t,x). 

If the function pm is upper (lower) semicontinuous, then by /4/ only the second (first) 
player in general has an optimal strategy. Therefore, in this case, we only have a pursuit 
(evasion) problem. We see that Proposition 1 on pursuit (Proposition 2 on evasion) of a 
fuzzy set starting from a fuzzy starting position holds in this case also. 

I would like to thank A.I. Subbotin for useful comments. 
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ON THE SMALL VIBRATIONS OF A STRATIFIED CAPILLARY LIQUID* 

S.T. SIMAKOV 

An initial-boundary value problem is considered for the equation which 

describes the vibrations of an ideal, stratified liquid occupying the lower 

half space in the Boussinesq approximation. The Vaisala-Brunt frequency 

is assumed to be constant. The boundary conditiononthe planar boundary 

is a combination of the conditions on the solid cover and the free surface 

and, moreover, the latter contains a term which takes account of capil- 

larity. A formulation of the problem is given, its solutionisconstructed 

and its behaviour at long times is investigated. 

1. Formulation of the problem. Let us assume that the stratified liquid occupies 

the half space R_3 = {z=&, x2, r,)I%<U)* We denote by n, the part of the plane ZQ = 0 

which is the surface of contact between the liquid and the solid cover and, by n,, the'set 

of points with which the free surface of the liquid in the unperturbed state coincides, that 

is, II, = {x1.z3 = O}\ II,. For convenience, we introduce into R’ the sets X, and Z, which 

are associated with n0 and II, in the following manner: 

ni={Z153=O/\X'=(51r52)E~i} (i=O,l) 

We require that 2, should be a bounded domain with a smooth boundary 32,. Let us 

consider the following problem: 

A,Q + o,~A+ = 0, s,< 0, t> 0 (1.1) 

U (z, 0) = U, (z, 0) = 0 (1.3 
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