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By formula (7.1), we obtain the optimal af @{" for the Shapley vector @ (x, T — f)
By (8124848 70841392 —02004-7.60\ 4, 4
w)*( 1530 * ~ 15t430 ' 15¢+30 ) SIS
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A DIFFERENTIAL GAME WITH A FUZZY TARGET SET
AND FUZZY STARTING POSITIONS

V.A. BAIDOSOV

A mathematical model of a situation in which it is required to develop a
single control strategy for a fuzzy set of objects in the presence of
noise is considered. The control objective is to hit a fuzzy target set
at a given instant of time or to evade the target set. The problem
reduces to constructing a universal optimal strategy for a differential
game whose payoff function is the membership function of the target set.

1. consider the differential game

X = f{t, x, u, v} (1.4)
x=R", w(=EP v

where P and @ are compacta in R" and RY. We assume that the right-hand side of (l.1l) satisfies
the canonical conditions /1, p.37, 38/ and that the small-game saddle-point condition holds

/1, p.79/. The game is considered in the time interval T’é—= {t,, Bl
Let u: T X R* - P be some positional strategy of the first player. We denote by K, [t,,
t] (x,) the set of constructive motions /2, p.33/ x(.) generated by the strategy u in the
time interval l&, t] and satisfying the initial condition x ({,) = x,. Let the set X be the
set of all non-empty subsets of the space X. We define the set-valued mapping
K, (1 ty): B" —>set R", 1>1,

setting
Ko (610X = (X (1) X () € K, [tor 1] (o))

We similarly define the set-valued mappings K, {¢ t,) for the second-player strategy v.

Let F(X) Dbe the family of fuzzy sets in the space X, pa the membership function of a
fuzzy set. The value of ps at the point X will be denoted by {pay XD

If some mapping

n. R* > F(R™) (1.2}

*prikl.Matem.Mekhan.,53,1,60-65,1989
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is given, then by Zadeh's generalization principle /3/, it can be continued to the mapping
n: F(RY) - F (R") 1.3)
setting for A= F(R") and ye& R

Mas ¥ = sup {<pas X3 /\ Haxo YD (1.4)
x&ER

Here /\ stands for the operation of taking the minimum, i.e., for any numbers @, dz,
A .
a; /\ a; = min {a,, a2}

Consider a special case of the mapping o (1.2)

n: R™ - set R™ (1.5)
Then (1.4) may be rewritten in the form

{paas ¥) = sup {pa, n'y) (1.6)
A
nly == {z:y &< nx}

If the set an"'y is empty, then the right-hand side in (1.6) is zero.

For the fuzzy sets A, B, the inclusion A C B implies that p, < up. Note that for
the mapping = (1.3) defined above, A4 C B implies that nd C nB. Let a&[0,1] and let
M be a fuzzy set. The level set M, is the ordinary (non-fuzzy) set defined by the condition

A
M,={x& R": {um, x> >> a}
The support of the fuzzy set M is the ordinary set
A
supp M = {x & R"™: (uuy, x) > 0}

Consider the mapping m (1.5). Its continuation (1.3) on F (R") satisfies the following
easily proved proposition. Let A4, B C F (R". Then nd C B if and only if for all a & (0, 1]
we have the inclusions sd, C B,. Here

:rtAa-é J mnx

x4,

Let us consider the problem of the pursuit of a fuzzy set from a fuzzy starting position.

We assume that the system state is defined by a fuzzy set in R™ Thus, the starting
positions are represented by the couples (t, A), where A & F (R"). The position (¢, 4) is a
fuzzy set in (¢, R"). Here

Wty 4y (6 XD = (g,

let M & F(R™ be the fuzzy target set.

We say that the strategy v solves the problem of the pursuit of M starting from the
position (¢, A) if K, (8,#f) A C M. We shall see that the pursuit problem for a fuzzy set
reduces to a maxmin problem. It is therefore naturally solved by the second player.

A

Consider a gaming problem with payoff function p = pm. If the function p is upper or
lower semicontinuous, and in particular continuous, then in this problem for any starting
position (i, X,) the value of the game exists,

A
¢ (tgr Xp) = sup inf {u, K, (8, ¢,) x,> = inf sup u, K, (8, t,) x¢>

The value of the game inherits the semicontinuity property of the payoff function /4/.
If the payoff function p is continuous, then the game has a saddle point (u° ¢°), i.e., for

o

any position (tg, Xo) there exist strategies u°and ¢° such that
¢ (Lo, Xo) = inf {u, Ko (8, 1) x> = sup {u, Ko (8, o) xo0

The strategies u° and 1° are called optimal. The optimal strategy ¢° is called
universal for the domain D C T X R" if for all (i, x)e=D
¢ (¢ x) = inf {p, K¢ (6, 8) x>

The universal strategy u° is similarly defined /4/.
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Since the payoff function p takes values in [0, 1], the value of the game also takes
values in [0, 1] and is a membership function of some fuzzy set W in 7T X R™. We introduce
the functions p't R® —» R' defined by the condition (p!, x> = ¢ {t, x).

Let ' be the membership function of the fuzzy set W (). Clearly, W(8 = M. The
sets W (t) are naturally considered as the time cross-sections of the set W.

Proposition 1. Let the membership function p = mwy be continuous. Then the problem of
the pursuit of the fuzzy set M starting from the fuzzy position (f, 4) is solvable only if

ACW(@® (1.7

If a universal optimal strategy ¢° exists for some domain D containing the support of

the set (¢, 4), then condition (1.7) is also sufficient for solving the pursuit problem by
<

the strategy ¢°.

Proof. Assume that a strategy v exists that solves the pursuit problem, Ky (8,04 C” M.
Then, by (1.6), this condition takes the form

Vis R, yak 0,0x:p,, <Py, yd

or
Ve B": gy, x> <iafan, K, (8, )% (1.8)
Hence
Ve R™: ty, x> sup inf <, Ky (8, 8) 0 = ¢, %
e

Thus, p, <@ and A CW(@.

Now assume that A C W(t) and a universal optimal strateqy +* exists for some domain D
containing the support of the set (¢, 4). Solvability of the pursuit problem by the strategy
+* is equivalent to condition (1.8) for v»=+ to the condition

Vx < supp 4: {p,, X inf (g, Ky 6, 0% (1.9}

We will show that this condition is satisfied. We have
V (e, x) e D <ul, x> = inf <p, Ky (6, 1) x>

Therefore,
Vx e supp 4: (f, x» = inf <u, Ko (8, 5>

Since A C W, this directly leads to (1.9}.

We see from this proposition that the set W plays the role of the maximum p-stable
bridge terminating on the set M. We also see from the proof that the pursuit problem of a
fuzzy set reduces to a maxmin problem for the membership function.

Now consider the evasion problem. We say that the first-player strategy u solves the
problem of evasion of the fuzzy set M from the fuzzy starting position (¢, 4), if it solves
the problem of pursuit of the complement M’ of the set M from the starting position (¢, 4). By
definition <{pm-, XD =1 — {pm, X Note that for fuzzy sets the intersection M [\ M  in
general is non-empty.

Let p' £ ppr =1 — p. Assume, as before, that the function p is continuous.

Let the starting position (¢, x) be given. Consider two games. In the first (second)
game, the first player scolves a minimax (maximin) problem and the second player solves a
maximin (minimax} problem for the payoff function w{p’). Let the value of the first game be
¢{ X} and the value of the second game be ¢' (¢, X). We can show that ¢ (8, x) =1 — e(t, x)
and the couple of strategies (u°, v") is a saddle point in the first game if and only if it
is a saddle peoint in the second game.

Note that the value of the game ¢ (f, X) is the membership function of the complement W'

’ : ] : r r A ’
of the set W. Consider the sets W' (f) with membership function p': {u'’, x> = ¢’ (t, X).
Then, using the above and Proposition 1, we obtain

Proposition 2. Let the payoff function £ pa be continuous. Then for the problem of
the evasion of the fuzzy set M starting from the fuzzy position (£, 4) to be solvable it is
necessary that

AC W @) {1.10)

If a universal optimal strategy u° exists for some domain D that contains the support

of the set (¢, A), then the condition (1.10) is sufficient to solve the evasion problem by

o

strateqgy u.

2, Universal strategies do not necessarily exist in the class of ordinary positional
strategies wu(t, X), v{f,x) /5, 4/. However, they exist in the class of positional strategies
u(t, z, 8, vtz e} dependent on the parameter e>0 /1, 6, 4/. We will follow the line
of analysis of /1/. The game is considered in the bounded domain

G={(t,x): t, <t <O IxlI <RI}
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RUI= (1 + Ry)exp {A(t — to)} — 1
Let
G = {xe B (i, x) = G}

We assume that the target set M belongs to F (G (8)). Note that if M is a fuzzy set in R"
with a precompact support, then R, may be chosen so that this condition is satisfied. For
fuzzy starting positions (, 4) we assume that A & F (G (f)). We denote by W the fuzzy set in
G whose membership function is the value of the game. The time cross-sections W (§) are
defined as in Sect.l.

The control law U = {u(.), &, A}, where A is a partitioning of the interval [t 6], e >0,
defines stepwise motion x{tf] =x [t € Al from the position (¢, Xx,) as the solution of the
stepwise equation

x [t =f( x[8), u(t, xI[t], &), vit)

5 <t <<l

where vlt] is a measurable function and x[f{] = x,. The constructive motion x{[t] generated
by the strategy u{.) 1is defined as the iterated limit

x[t] = lim lim x[¢; ) Aj]
{ef—-o :dje—m

where §; is the step of the partition A,

We similarly introduce stepwise and constructive motions defined respectively by the
control law V = {v (.}, &, A} and the strategy v (f z,¢) of the second player.

Some modifications of the constructions of Sect.l lead to the following proposition for
a differential game with strategies dependent on &.

Proposition 3. Let the payoff function p 4 WM be continuous. Then for the problem of
pursuit (evasion) of the fuzzy set M starting from the fuzzy position (I, 4) to be sclvable
it is necessary and sufficient that A C W () (4 C W' (f)). Here the universal optimal strategy
v° (1) solves the evasion (pursuit) problem.

Note that if A C W () [} W (), then the problem of pursuit of the set M and the problem
of evasion of the set M are solvable from the position (¢, A). In this respect, fuzzy sets
are different from ordinary sets.,

Now consider the solution of the problem by stepwise motions approximating constructive
motions, Let &{A) denote the step of the partition A. Let K,lt, 0; &, 8, (X;) be the set
of all stepwise motions x (it} in the interval {#, 6] generated by the control laws U =
{u(-), e 8}, where &<(&, 8(A)< 8, such that x [] = x,. Similarly define the set K, [t
8; g4, 85l (xg) of stepwise motions generated by the control laws of the second player.

For t:>>1t, define the operators

K, (t ty;8,8): G(tg) »setG (1), w=u,v 2.1)
setting

Kyt ty 8, 8yx = {x[t} x[.1 = K, 4, 8; &, 8] (x}},
Vx & G (1)

Using (1.4), continue the operators (2.1) to F (G (¢)).

For the numbers a,, a,¢= 10,11 we define the operation a4, 4-a; setting a, ;- @, = a, + a,
for a + a1 and a, J-a3 =1 for a + a>1.

Define the fuzzy set M by

ppr ¥ =Qarn ¥ =8, Yy=G(6)
The set At plays the role of the ({-neighbourhood of the set M.

FProposition 4. Let the payoff function p =, be continuous, let ©° be a universal
optimal strategy, and let A C W (). Then for any number { > 0. there is a number &({) >0
and a function §(§,e) >0 such that for e (e (f), 8 L6 (L, ¢€) we have the inclusion

Koo (B, tg; 8,804 C ML
The proof follows from /1, p.232, Theorem 29.4/.
The corresponding proposition for the evasion problem is obvious.

3. Let us briefly consider the case when the membership function of the target set is
semicontinuous. As before, we assume that u, is the payoff function. Positional strategies
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are assumed to depend only on (i, X).

If the function p, is upper (lower) semicontinuous, then by /4/ only the second (first)
player in general has an optimal strategy. Therefore, in this case, we only have a pursuit
(evasion) problem. We see that Proposition 1 on pursuit (Proposition 2 on evasion) of a
fuzzy set starting from a fuzzy starting position holds in this case also.

I would like to thank A.I. Subbotin for useful comments.
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ON THE SMALL VIBRATIONS OF A STRATIFIED CAPILLARY LIQUID

S.T. SIMAKOV

An initial-boundary value problem is considered for the equation which
describes the vibrations of an ideal, stratified liquid occupying the lower
half space in the Boussinesqg approximation. The Vaisala-Brunt frequency

is assumed to be constant. The boundary conditionon the planar boundary

is a combination of the conditions on the sclid cover and the free surface
and, moreover, the latter contains a term which takes account of capil-
larity. A formulation of the problem is given, its solution is constructed
and its behaviour at long times is investigated.

1. Formulation of the problem. Let us assume that the stratified liquid occupies
the half space R_® = {z = (,, 22, ¥5)|23<<0}. We denote by II; the part of the plane z3 =0
which is the surface of contact between the liquid and the solid cover and, by II,, the set
of points with which the free surface of the liquid in the unperturbed state coincides, that
is, I, = {z]rz = 0} \\ II,. For convenience, we introduce into R® the sets Z, and Z; which
are associated with Il and 1II; in the following manner:

O ={zx|a; =0A 2 =(zg, ) Z;} (=01

We require that 3, should be a bounded domain with a smooth boundary 8%, Let us
consider the following problem:

Agutgs + 02Au =0, z3<0, t>0 (1.1)
u(z,0) =u(z, 0 =0 (1.2)
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